Generic Construction of UC-Secure Oblivious Transfer J

O. Blazy, C.Chevalier

' :
(3 ////%f UNIVERSITE

PANTHEON-ASSAS
- PARIS 11 -

O. Blazy (Xlim) Generic OT 1/20

© Global Framework

O. Blazy (Xlim) Generic OT 2/ 20

© Global Framework

© Cryptographic Tools

O. Blazy (Xlim) Generic OT 2/ 20

© Global Framework
© Cryptographic Tools

© 1l-out-of-t Oblivious Transfer

O. Blazy (Xlim) Generic OT 2/ 20

© Global Framework
© Cryptographic Tools
© 1l-out-of-t Oblivious Transfer

© Instantiation

O. Blazy (Xlim) Generic OT 2/ 20

© Global Framework

© Cryptographic Tools

© 1l-out-of-t Oblivious Transfer
© Instantiation

© Conclusion

O. Blazy (Xlim) Generic OT 2/ 20

© Global Framework
@ Motivation

O. Blazy (Xlim) Generic OT 3/ 20

Conditional Actions

Oblivious Transfer
Database User
C(line)

DB|line]

~> The User learns the value of line but nothing else.
~» The Database learns nothing.

O. Blazy (Xlim) Generic OT 4 /20

Semantic security
@ Only the requested line should be learned by the User J

O. Blazy (Xlim) Generic OT 5/ 20

Semantic security
@ Only the requested line should be learned by the User J

Oblivious J

@ The authority should not learn which line was requested

O. Blazy (Xlim) Generic OT 5/ 20

© Cryptographic Tools
@ Encryption Scheme
@ Chameleon Hash Scheme
@ Smooth Projective Hash Function

O. Blazy (Xlim) Generic OT 6 / 20

Definition (Encryption Scheme)
& = (Setup, KeyGen, Encrypt, Decrypt):
@ Setup(R): param;
o KeyGen(param): public encryption key pk, private decryption key dk;
@ Encrypt(pk, m; r): ciphertext ¢ on m € M and pk;
o Decrypt(dk, ¢): decrypts ¢ under dk.

Indistinguishability under Chosen Ciphertext Attack

O. Blazy (Xlim) Generic OT 7/ 20

Definition (Chameleon Hash Scheme)

CH = (Setup, KeyGen, CH, Coll):
@ Setup(R): param;
e KeyGen(param): outputs the chameleon hash key ck and the trapdoor tk;
@ CH(ck, m; r): Picks r, and outputs the hash a;

o Coll(ck, m,r,m’ tk): Takes tk, (m,r) and m’, and outputs r’ such that
CH(ck, m; r) = CH(ck, m’; r').

O. Blazy (Xlim) Generic OT 8/ 20

Definition (Chameleon Hash Scheme)

CH = (Setup, KeyGen, CH, Coll):
@ Setup(R): param;
e KeyGen(param): outputs the chameleon hash key ck and the trapdoor tk;
@ CH(ck, m; r): Picks r, and outputs the hash a and verification value d;

o Coll(ck, m,r,m’ tk): Takes tk, (m,r) and m’, and outputs r’ such that
CH(ck, m; r) = CH(ck, m’; r').

Extra Procedures (Verification)

o VKeyGen(ck): Outputs vk and vtk. L or public if publicly verifiable.
o Valid(ck, vk, m, a, d, vtk): Allows to check that d opens a to m.

Collision Resistance *

O. Blazy (Xlim) Generic OT

8 /20

Definition (Smooth Projective Hash Functions) [CS02]

Let {H} be a family of functions:
@ X, domain of these functions
@ L, subset (a language) of this domain
such that, for any point x in L, H(x) can be computed by using
@ either a secret hashing key hk: H(x) = Hash,(hk; x);
@ or a public projected key hp: H'(x) = ProjHash, (hp; x, w)

Public mapping hk — hp = ProjKG; (hk, x)

O. Blazy (Xlim) Generic OT 9 /20

Properties

For any x € X, H(x) = Hash(hk; x)
For any x € L, H(x) = ProjHash, (hp; x,w) w witness that x € L

O. Blazy (Xlim) Generic OT 10 / 20

Properties

For any x € X, H(x) = Hash(hk; x)
For any x € L, H(x) = ProjHash, (hp; x,w) w witness that x € L

Smoothness
For any x & L, H(x) and hp are independent J

O. Blazy (Xlim) Generic OT 10 / 20

Properties

For any x € X, H(x) = Hash(hk; x)
For any x € L, H(x) = ProjHash, (hp; x,w) w witness that x € L

Smoothness

For any x & L, H(x) and hp are independent J
Pseudo-Randomness

For any x € L, H(x) is pseudo-random, without a witness w J

O. Blazy (Xlim) Generic OT 10 / 20

© 1-out-of-t Oblivious Transfer
@ Definition
@ Our Generic Construction
@ Security

O. Blazy (Xlim) Generic OT 11 / 20

Oblivious Transfer [Rab81]

A user U wants to access a line £ in a database D composed of t of them:
@ U learns nothing more than the value of the line ¢

@ D does not learn which line was accessed by U

O. Blazy (Xlim) Generic OT 12 / 20

Oblivious Transfer [Rab81]

A user U wants to access a line £ in a database D composed of t of them:
@ U learns nothing more than the value of the line ¢
@ D does not learn which line was accessed by U

Correctness: if U request a single line, he learns it

O. Blazy (Xlim) Generic OT 12 / 20

Oblivious Transfer [Rab81]

A user U wants to access a line £ in a database D composed of t of them:
@ U learns nothing more than the value of the line ¢
@ D does not learn which line was accessed by U

Correctness: if U request a single line, he learns it

Security Notions

@ Oblivious: D does not know learn which line was accessed ;

@ Semantic Security: U does not learn any information about the other lines.

O. Blazy (Xlim) Generic OT 12 / 20

Generic bit UC Commitment

o User picks a bit b, random r,d;_p, S, and computes (a, dp) = CH(ck, b; r)

O. Blazy (Xlim) Generic OT 13 / 20

Generic bit UC Commitment
o User picks a bit b, random r,d;_p, S, and computes (a, dp) = CH(ck, b; r)
@ He then computes C = Encrypt(dy, di; 5).

O. Blazy (Xlim) Generic OT 13 / 20

Generic bit UC Commitment
o User picks a bit b, random r,d;_p, S, and computes (a, dp) = CH(ck, b; r)
@ He then computes C = Encrypt(dy, di; 5).

O. Blazy (Xlim) Generic OT 13 / 20

Generic bit UC Commitment
o User picks a bit b, random r,d;_p, S, and computes (a, dp) = CH(ck, b; r)
@ He then computes C = Encrypt(dy, di; 5).

SPHF Compatibility

If the encryption is SPHF friendly, then one can build an SPHF on the language of
valid encryption of a chameleon information.
Ly = {c|3d1_p, s, Valid(ck, vk, b, a, dp, vtk) A ¢ = Encrypt(do, d1;5s)}

O. Blazy (Xlim) Generic OT 13 / 20

Generic 1-out-of-t Oblivious Transfer
o User U picks ¢:
For each bit, picks random r;, di_y, ;, and computes (a;, dp, ;) = CH(ck, ¢;; r;)
He then computes C = Encrypt(d; 5) and sends C, 7.

O. Blazy (Xlim) Generic OT 14 / 20

Generic 1-out-of-t Oblivious Transfer
o User U picks ¢:
For each bit, picks random r;, di_y, ;, and computes (a;, dp, ;) = CH(ck, ¢;; r;)
He then computes C = Encrypt(d; 5) and sends C, 7.

o For each line Lj, server S computes hk;, hp;, and H; = Hash,(hk;,C),
M; = H; @ L; and sends M;, hp;.

O. Blazy (Xlim) Generic OT 14 / 20

Generic 1-out-of-t Oblivious Transfer

o User U picks ¢:
For each bit, picks random r;, di_y, ;, and computes (a;, dp, ;) = CH(ck, ¢;; r;)
He then computes C = Encrypt(d; 5) and sends C, 7.

o For each line L;, server S computes hk;, hp;, and H; = Hash,(hk;,C),
M; = H; ® L; and sends M;, hp;.

o For the line ¢, user computes H; = ProjHash ., (hp,,C, 5;), and then
Ly =M, & Hé

O. Blazy (Xlim) Generic OT 14 / 20

Security Properties

v" Oblivious: IND-CCA security of the encryption scheme;

v' Semantic Security: Smoothness of the SPHF / Collision Resistance of the
Chameleon Hash

v UC simulation: Collision algorithm (Equivocation) of the Chameleon hash

O. Blazy (Xlim) Generic OT 15 / 20

Security Properties

v" Oblivious: IND-CCA security of the encryption scheme;

v' Semantic Security: Smoothness of the SPHF / Collision Resistance of the
Chameleon Hash

v UC simulation: Collision algorithm (Equivocation) of the Chameleon hash

Need an artificial extra-round to handle adaptive corruption
Adds an extra encryption key for a CPA encryption scheme

O. Blazy (Xlim) Generic OT 15 / 20

© |Instantiation

O. Blazy (Xlim) Generic OT 16 / 20

Chameleon Hash: Discrete Logarithm [Ped91]
o KeyGen(): Outputs ck = (g, h) tk = a = log,(h);
o VKeyGen(ck): Generates vk = f and vtk = log,(f)
o CH(ck,vk,m;r): s & Zp, and outputs a = h°g"™, d = f°.
o Coll(m,s, m',tk): Outputs s’ = s+ (m—m')/a.
o Valid(ck, vk, m, a, d,vtk): Checks a = h™ - d'/vtk,

O. Blazy (Xlim) Generic OT 17 / 20

Chameleon Hash: Discrete Logarithm [Ped91]

o KeyGen(R): Outputs ck = (g, h) tk = a = log,(h);

o VKeyGen(ck): Generates vk = f and vtk = log,(f)

o CH(ck,vk,m;r): s & Zp, and outputs a = h°g™, d = f*.
o Coll(m,s, m',tk): Outputs s’ = s+ (m—m')/a.

o Valid(ck, vk, m, a, d,vtk): Checks a = h™ - d'/vtk,

Chameleon Hash: SIS [CHKP10,MP12]

o KeyGen(R): Ao & Zf‘xz, (A1, Ry) + GenTrapP(1%,1™ q).
Defines ck = (Ag, A1) and tk = Ry.
o VKeyGen(ck): Outputs vk = L, vtk = L

—

o CH(ck, vk, AZ;F): r+ D, so(y/log R’ C:ﬁoﬂﬁ+ﬁ1ﬁ Returns 6,?.

): Outputs
Aq (A0M0+A1I:6)7A0M1),5).
o Verif(ck,vtk, M, C, 7): |7 small, and C = AgM + A;F.

—

o Coll(tk, (Mo, 7), My
n <« SampIeD(1,

O. Blazy (Xlim) Generic OT

17 / 20

CCA-2: Cramer Shoup [CS02]

o KeyGen(R): Given g, x1,x2,¥1, 2,2 & Zp, set sk = (x1, %2, y1, ¥2,2) and
pk= (81,8, 1 = &1° 8" 2 = &1" 85", I = &f, H).

e Encrypt(pk,d;r): C=(u=g{,v=gs,e=h;-d,w=(cic§)"), where
0=H(u,v,e).

o Decrypt(dk,C): If w = yatfvay*et0%2 then compute M = e/u?.

O. Blazy (Xlim) Generic OT 18 / 20

CCA-2: Cramer Shoup [CS02]

o KeyGen(R): Given g, x1,x2,¥1, 2,2 & Zp, set sk = (x1, %2, y1, ¥2,2) and
pk = (81,82, 1 = g1° 83" 2 = g1° 83", 1 = &f , H).

e Encrypt(pk,d;r): C=(u=g{,v=gs,e=h;-d,w=(cic§)"), where
0=H(u,v,e).

o Decrypt(dk,C): If w = yatfvay*et0%2 then compute M = e/u?.

SPHF on valid encryption of valid chameleon witness
o ProjKG(C, b): Computes the projection keys hp = h*F~, hegl'g¥(cich)?.
e Hash(C,hk) H = (C/g™)* - b"*.
@ ProjHash(C, b, hp): The prover will compute H" = hp®hp".

O. Blazy (Xlim) Generic OT 18 / 20

CCA-27
@ We need an SPHF compatible encryption.

O. Blazy (Xlim) Generic OT 19 / 20

CCA-27
@ We need an SPHF compatible encryption.
@ Only [KV09] is known, and only for approximate SPHF, and is only CCA-1

O. Blazy (Xlim) Generic OT 19 / 20

CCA-27
@ We need an SPHF compatible encryption.
@ Only [KV09] is known, and only for approximate SPHF, and is only CCA-1
@ However CCA-1 + S-OTS = CCA-2, and Chameleon Hashes gives S-OTS

O. Blazy (Xlim) Generic OT 19 / 20

CCA-27
@ We need an SPHF compatible encryption.
@ Only [KVO09] is known, and only for approximate SPHF, and is only CCA-1
@ However CCA-1 + S-OTS = CCA-2, and Chameleon Hashes gives S-OTS
@ Approximate SPHF, requires repetition for perfect line recovery.

O. Blazy (Xlim) Generic OT

19 / 20

V" Generic Framework for 1-out-k Oblivious Transfer

O. Blazy (Xlim) Generic OT 20 / 20

V" Generic Framework for 1-out-k Oblivious Transfer

v" Constructions under classical assumptions (DCR, DDH, LWE) in the standard
model

O. Blazy (Xlim) Generic OT 20 / 20

V" Generic Framework for 1-out-k Oblivious Transfer

v" Constructions under classical assumptions (DCR, DDH, LWE) in the standard
model

v Proven in the UC framework with adaptive corruptions

O. Blazy (Xlim) Generic OT 20 / 20

V" Generic Framework for 1-out-k Oblivious Transfer

v" Constructions under classical assumptions (DCR, DDH, LWE) in the standard
model

v Proven in the UC framework with adaptive corruptions
v As efficient as [ABB*13] but without pairings

O. Blazy (Xlim) Generic OT 20 / 20

V" Generic Framework for 1-out-k Oblivious Transfer

v" Constructions under classical assumptions (DCR, DDH, LWE) in the standard
model

v Proven in the UC framework with adaptive corruptions
v As efficient as [ABB*13] but without pairings
v' Constant size CRS (contrarily to [PVW08])

O. Blazy (Xlim) Generic OT 20 / 20

	Global Framework
	Motivation

	Cryptographic Tools
	Encryption Scheme
	Chameleon Hash Scheme
	Smooth Projective Hash Function

	1-out-of-t Oblivious Transfer
	Definition
	Our Generic Construction
	Security

	Instantiation
	Conclusion

