

OVERVIEW OF THE STATE OF POSTQUANTUM CRYPTOGRAPHY

Panorama des approches et enjeux de la cryptographie post-quantique

1 QUICK REMINDERS ON CRYPTO

CRYPTOGRAPHY GOALS

Ensure communication security over a public channel with adversaries

- Passive: The adversaries listen to the conversation (Eavesdropper)
- Active: They can write, alter, remove communications over the channel

What is the secret ingredient?

ÉCOLE POLYTECHNIQUE – LIX - GRACE Team

QUICK TIMELINE

- Artisanal Age: (~ 1900)
 - Caesar: Each letter is replaced by one 3 steps after
 - Generalized in basic permutation / substitution (Vigenere, Hill, ...)
- Mechanical Age: (~ 1900 \rightarrow 1970)
 - Substitution and permutation are done by machines (Hagelin, Enigma (2nd WW))
- Paradoxical Age: (Since 1970)
 - Doing impossible things: Zero-Knowledge Proofs, Anonymous Authentication, Machine Learning on Encrypted Data

QUICK TIMELINE

- Artisanal Age: (~ 1900)
 - Caesar: Each letter is replaced by one 3 steps after
 - Generalized in basic permutation / substitution (Vigenere, Hill, ...)
- Mechanical Age: (~ 1900 \rightarrow 1970)
 - Substitution and permutation are done by machines (Hagelin, Enigma (2nd WW))
- Paradoxical Age: (Since 1970)
 - Doing impossible things: Zero-Knowledge Proofs, Anonymous Authentication, Machine Learning on Encrypted Data
 - Post-Quantum Cryptography

SYMMETRIC CRYPTOGRAPHY

The key K used to encrypt / sign is the same used to decrypt / verify

Security (Enc): Without knowing K one cannot recover M. (DES, AES, ...) Security (Auth): Without knowing K one cannot authenticate M. ÉCOLE POLYTECHNIQUE - LIX - GRACE Team reminders on

ASYMMETRIC CRYPTOGRAPHY

There is a set of keys, a public key P_B accessible by everyone to encrypt, and a secret key K_B to decrypt possessed only by Bob.

reminder

Security (Enc): Without knowing K_B one cannot recover M even when knowing P_B . (RSA, ElGamal, ...) Security (Auth): Without knowing K_A one cannot sign M even when knowing P_A . ÉCOLE POLYTECHNIQUE - LIX - GRACE Team 6/20

7/20

- For asymmetric cryptography, one may want at least 1536 bits for RSA, et 256 for Elliptic Curves.
- adversary.
 Birthday paradox says that 128 bits of security is de-facto the minimum
- With current computers, we consider that 2^{64} operations is within reach of an adversary

requirement. (256, or even 512 are more and more recommended)

2 The quantum menace

QUANTUM AGAINST CRYPTOGRAPHY

- 1994 Peter Shor proposed a quantum algorithm breaking discrete logarithm and factorisation assuming enough qubits.
- 1996 Grover proposed a quantum algorithm allowing to search unstructured sets of size N in $O(\sqrt{N})$

The Quantum menace

A BRIEF SUMMARY

The Quantum menace

	$\operatorname{Symmetric}$	Asymmetric
Encryption	Grover	Shor
Authentication	Grover	Shor

Encryption: Save now, attack later Signature: Need a live attack

ÉCOLE POLYTECHNIQUE – LIX - GRACE Team

A DANGER, NOT SO CLOSE

Applying Shor algorithm requires:

- a huge number of qubits
- even more quantum gates

Estimates show that for the 256 bits of security, we need **2330** qubits to break the discrete logarithm on elliptic curves, and **3072** to factor an RSA modulus.

Current best quantum computer claims... 256 qubits with some restriction.

A POSTQUANTUM WORLD

Cryptography based on isogenies? Lattice-based / Code-based cryptography? Multivariate cryptography? Hash-based cryptography?

Probably Quite likely Quite likely too Yes! (but no encryption)

Syndrome Decoding / Short Integer Solution Given A, s find a small x such that Ax = s

Learning With Error Given A, and c, decide whether c is *close* to the span of A. (ie c = As + e)

Warning Depending on the underlying ring/field, the noise sampling, the metric used, this can go very poorly

Random walks on graph

 $\begin{array}{cccc} E & \stackrel{\phi_1}{\longrightarrow} & E_1 \\ \downarrow \phi_2 & & \downarrow \phi_2 \\ E_2 & \stackrel{\phi_1}{\longrightarrow} & E_{12} \end{array}$

Computation Supersingular Diffie-Hellman Given E, E_1, E_2 , find E_{12} .

Warning The main problem (SIDH) was broken this summer (few seconds on a laptop). But CSIDH using group action remains safe.

MULTIVARIATE POLYNOMIALS

The MQ Problem Given

- A finite field of q elements \mathbb{F}_q ;
- m quadratic polynomials $p_1,\ldots,p_m\in \mathbb{F}_q[X_1,\ldots,X_n]$ in n variables.

Find a solution $(x_1, \ldots, x_n) \in \mathbb{F}_q^n$ to the system of equations $p_i(X_1, \ldots, X_n) = 0$.

Warning Finding the right balance between efficiency and security is complex, and lead to attacks.

ENTER THE NIST PQ COMPETITION

- International Call in 2016
- 69 proposals at Round 1 (16 Fr)
- Round 2, only 26 remains
 - 9 Signatures (Lattices, MV, Hash) (3 Fr)
 - 17 KEM (Lattices, Codes, Isogenies) (6 Fr)
- Round 3, 7 finalists, 8 alternates:
 - 3 (+3) Signatures (Lattices, MV, Hash) (3 + 1 Fr)
 - 4 (+5) KEM (Lattices, Codes, Isogenies) (2 + 2 Fr)
- Standardisation of 3 Signatures, and 1 KEM all Lattices (2,1 Fr)
 - Round 4, for 4 KEM (Codes, Isogenies) (2 Fr) For October'22, then Summer'23?
 - New call for other kind of signatures

Pros: Many research papers, new attacks, tested in the wild (TLS 1.3...) Cons: A lot of noise, and non scientific disruptions

ÉCOLE POLYTECHNIQUE – LIX - GRACE Team

PostQuantum world

For June'23

ÉCOLE POLYTECHNIQUE – LIX - GRACE Team

- SIKE: IBM, Infosec Global, Louisian Tech, Linkedin, NRC, TI, Radboud, Toronto, Waterloo, FAU, A,M

- BIKE: Rennes, Wordline, Enac, U.Limoges, Supaero, Inria, Bordeaux, Polytechnique, UoW, Intel, Haifa, RUB, G. FAU
- HQC: Rennes, Worldline, Enac, U. Toulon, U. Limoges, U. Bordeaux, Polytechnique, G, FAU
- Classic McEliece: Inria, RHUL, RUB, Sinica, Okinawa, ETHZ, Eindhoven, G, FAU, MPI, Yale, PQSolutions
- σ SPHINCS⁺: Taurus. RUB. KUL. Graz. Genua. Eindhoven, G, Infineon, Cisco, USD, Radboud, Cloudflare 4th Round, Encryption

σ FALCON: Rennes 1. Thales, Brown, IBM, NCC, OnBoard Security

- E/σ CRYSTAL-Kyber/ Dilithium: ENS Lyon, ARM, NXP, CWI, RUB, SRI, IBM, Waterloo, Radboud

RESULTS OF NIST

Standardized* (Lattices)

ÉCOLE POLYTECHNIQUE – LIX - GRACE Team

4th Round, Encryption

18/20

? SIKE: IBM. Infosec Global. Louisian Tech. Linkedin, NRC, TI, Radboud, Toronto, Waterloo, FAU, A,M

- BIKE: Rennes, Wordline, Enac, U.Limoges, Supaero, Inria, Bordeaux, Polytechnique, UoW, Intel, Haifa, RUB,
 G, FAU
- HQC: Rennes, Worldline, Enac, U.Toulon, U.Limoges, U.Bordeaux, Polytechnique, G, FAU
 BIKE: Rennes, Worldine, Enac, U.Limoges, Supaero, Inria, Bordeaux, Polytechnique, UoW, Intel, Haifa, RUB,
- Classic McEliece: Inria, RHUL, RUB, Sinica, Okinawa, ETHZ, Eindhoven, G, FAU, MPI, Yale, PQSolutions
- σ SPHINCS⁺: Taurus, RUB, KUL, Graz, Genua, Eindhoven, G, Infineon, Cisco, USD, Radboud, Cloudflare

$Standardized^* (Lattices)$

RESULTS OF NIST

E/o CRYSTAL-Kyber/ Dilithium: ENS Lyon, ARM, NXP, CWI, RUB, SRI, IBM, Waterloo, Radboud

 σ FALCON: Rennes 1, Thales, Brown, IBM, NCC, OnBoard Security

A PostQuantum world

AND NOW?

Should we switch to PQC?

ANSSI, and other agencies are warning that switching to PQC only is probably risky, an why hybrid design (Vanilla+PQC) seems safer and wiser. Schemes that were in the final stages were broken on classical computers. It is still too early to trust them completely

Classical **hybrid** design would be only slightly less efficient than PQC only (Increase by 10%). It is also an interesting path of research to explore this hybrid aspect and see if there are further optimizations possible between the standards/finalists and classical schemes.

NIST and NSA have been very elliptical about this...

PostQuantun

WRAPPING UP

Quantum Computers!

Will annihilate classical cryptography... some day

Encryption

Can still be meaningful in 20 years, so we need to update today

4 main kind of hypotheses exist

Lattice and codes are the safest choice for now, as they have been extensively studied

France

Is well represented, 25% of the submission, 75% of the standards/finalists