Interactive and Non-Interactive Proofs of Knowledge

Olivier Blazy

ENS / CNRS / INRIA / Paris $7 \rightarrow$ RUB

Sept 2012
(1) General Remarks

(2) Building blocks

(3) Non-Interactive Proofs of Knowledge
(1) General Remarks

(2) Building blocks

(3) Non-Interactive Proofs of Knowledge

(4) Interactive Implicit Proofs
(1) General Remarks
(2) Building blocks
(3) Non-Interactive Proofs of Knowledge
(4) Interactive Implicit Proofs
(1) General Remarks
(2) Building blocks
(3) Non-Interactive Proofs of Knowledge
(4) Interactive Implicit Proofs

Proof of Knowledge

- interactive method for one party to prove to another the knowledge of a secret \mathcal{S}.
(1) Completeness: \mathcal{S} is true \rightsquigarrow verifier will be convinced of this fact
(2) Soundness: \mathcal{S} is false \rightsquigarrow no cheating prover can convince the verifier that \mathcal{S} is true

Classical Instantiations : Schnorr proofs, Sigma Protocols ...

Zero-Knowledge Proof Systems

- Introduced in 1985 by Goldwasser, Micali and Rackoff.

> Reveal nothing other than the validity of assertion being proven

- Used in many cryptographic protocols
- Annnymous credentials
- Anonymous signatures
- Online voting

Zero-Knowledge Proof Systems

- Introduced in 1985 by Goldwasser, Micali and Rackoff.
\rightsquigarrow Reveal nothing other than the validity of assertion being proven
- Used in many cryptographic protocols
- Anonymous credentials
- Anonymous signatures
- Online voting

Zero-Knowledge Proof Systems

- Introduced in 1985 by Goldwasser, Micali and Rackoff.
\rightsquigarrow Reveal nothing other than the validity of assertion being proven
- Used in many cryptographic protocols
- Anonymous credentials
- Anonymous signatures
- Online voting
- ...

Zero-Knowledge Interactive Proof

Alice

Bob

- interactive method for one party to prove to another that a statement \mathcal{S} is true, without revealing anything other than the veracity of \mathcal{S}.
(© Completeness: if \mathcal{S} is true, the honest verifier will be convinced of this fact
(2) Soundness: if \mathcal{S} is false, no cheating prover can convince the honest verifier that it is true
© Zero-knowledge: if \mathcal{S} is true, no cheating verifier learns anything other than this fact.

Zero-Knowledge Interactive Proof

Alice

Bob

- interactive method for one party to prove to another that a statement \mathcal{S} is true, without revealing anything other than the veracity of \mathcal{S}.
(1) Completeness: if \mathcal{S} is true, the honest verifier will be convinced of this fact
(2) Soundness: if \mathcal{S} is false, no cheating prover can convince the honest verifier that it is true
(3) Zero-knowledge: if \mathcal{S} is true, no cheating verifier learns anything other than this fact.

Non-Interactive Zero-Knowledge Proof

Alice

Bob

- non-interactive method for one party to prove to another that a statement \mathcal{S} is true, without revealing anything other than the veracity of \mathcal{S}.
(1) Completeness: \mathcal{S} is true \rightsquigarrow verifier will be convinced of this fact
(2) Soundness: \mathcal{S} is false \rightsquigarrow no cheating prover can convince the verifier that \mathcal{S} is true
(3) Zero-knowledge: \mathcal{S} is true \rightsquigarrow no cheating verifier learns anything other than this fact.

History of NIZK Proofs

Inefficient NIZK

- Blum-Feldman-Micali, 1988.
- De Santis-Di Crescenzo-Persiano, 2002.

Alternative: Fiat-Shamir heuristic, 1986: interactive ZK proof \rightsquigarrow NIZK

 But limited by the Random OracleEfficient NIZK

- Groth-Ostrovsky-Sahai, 2006.
- Groth-Sahai 2008

History of NIZK Proofs

Inefficient NIZK

- Blum-Feldman-Micali, 1988.
- De Santis-Di Crescenzo-Persiano, 2002.

Alternative: Fiat-Shamir heuristic, 1986: interactive ZK proof \rightsquigarrow NIZK But limited by the Random Oracle

Efficient NIZK

- Groth-Ostrovsky-Sahai, 2006.
- Groth-Sahai, 2008

History of NIZK Proofs

Inefficient NIZK

- Blum-Feldman-Micali, 1988.
- ...
- De Santis-Di Crescenzo-Persiano, 2002.

Alternative: Fiat-Shamir heuristic, 1986: interactive ZK proof \rightsquigarrow NIZK But limited by the Random Oracle

Efficient NIZK

- Groth-Ostrovsky-Sahai, 2006.
- Groth-Sahai, 2008.

Applications of NIZK Proofs

- Fancy signature schemes
- group signatures
- ring signatures
- traceable signatures
- Efficient non-interactive proof of correctness of shuffle
- Non-interactive anonymous credentials
- CCA-2-secure encryption schemes (with public verifiability)
- Identification
- E-voting, E-cash
- ...

Conditional Actions

Certification of a public key

$\pi \rightsquigarrow$ The User should know the associated sk.

Conditional Actions

Signature of a blinded message

$\pi \rightsquigarrow$ The User should know the plaintext M.

Conditional Actions

Transmission of private information

Server		Use
	$\begin{gathered} \text { Request } \leftarrow \\ \rightarrow \text { info } \end{gathered}$	管

$\pi \rightsquigarrow$ The User should possess some credentials.

Soundness

- Only people proving they know the expected secret should be able to access the information.

Zero-Knowledge

- The authority should not learn said secret.
(1) General Remarks
(2) Building blocks
- Bilinear groups aka Pairing-friendly environments
- Commitment / Encryption
- Signatures
- Security hypotheses
(3) Non-Interactive Proofs of Knowledge
(4) Interactive Implicit Proofs

Symmetric bilinear structure

$\left(p, \mathbb{G}^{\mathbb{G}} \mathbb{G}_{T}, e, g\right)$ bilinear structure:

- $\mathbb{G}, \mathbb{G}_{T}$ multiplicative groups of order p
- $p=$ prime integer
- $\langle g\rangle=\mathbb{G}$
- e: $\mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{T}$
- $\langle e(g, g)\rangle=\mathbb{G}_{T}$
- $e\left(g^{a}, g^{b}\right)=e(g, g)^{a b}, a, b \in \mathbb{Z}$
deciding group membership,
- group operations,
bilinear map
efficiently computable.

Definition (Encryption Scheme)

$\mathcal{E}=($ Setup, EKeyGen, Encrypt, Decrypt):

- Setup $\left(1^{\mathfrak{K}}\right)$: param;
- EKeyGen(param): public encryption key pk, private decryption key dk;
- Encrypt(pk, m; r): ciphertext c on $m \in \mathcal{M}$ and pk;
- Decrypt(dk, c): decrypts c under dk.

Indistinguishability:
Given M_{0}, M_{1}, it should be hard to guess which one is encrypted in C.

Definition (Linear Encryption)

- $\operatorname{Setup}\left(1^{\mathfrak{K}}\right)$: Generates a multiplicative group (p, \mathbb{G}, g).
- EKeyGen $\mathcal{E}^{(}$param): $\mathrm{dk}=(\mu, \nu) \stackrel{\Phi}{\leftarrow} \mathbb{Z}_{p}^{2}$, and $\mathrm{pk}=\left(X_{1}=g^{\mu}, X_{2}=g^{\nu}\right)$.
- Encrypt(pk $\left.=\left(X_{1}, X_{2}\right), M ; \alpha, \beta\right)$: For M, and random $\alpha, \beta \stackrel{\Phi}{\leftarrow} \mathbb{Z}_{p}^{2}$, $\mathcal{C}=\left(c_{1}=X_{1}^{\alpha}, c_{2}=X_{2}^{\beta}, c_{3}=g^{\alpha+\beta} \cdot M\right)$.
- Decrypt $\left(\mathrm{dk}=(\mu, \nu), \mathcal{C}=\left(c_{1}, c_{2}, c_{3}\right)\right)$: Computes $M=c_{3} /\left(c_{1}^{1 / \mu} c_{2}^{1 / \nu}\right)$.

Randomization

Random(pk, $\mathcal{C} ; r, s): \mathcal{C}^{\prime}=\left(c_{1} X_{1}^{r}, c_{2} X_{2}^{s}, c_{3} g^{r+s}\right)=\left(X_{1}^{\alpha+r}, X_{2}^{\beta+s}, g^{\alpha+r+\beta+s} \cdot M\right)$

Definition (Commitment Scheme)

$\mathcal{E}=$ (Setup, Commit, Decommit):

- $\operatorname{Setup}\left(1^{\mathfrak{K}}\right)$: param, ck;
- Commit(ck, $m ; r$): c on the input message $m \in \mathcal{M}$ using $r \stackrel{\$}{\leftarrow} \mathcal{R}$;
- Decommit $(\mathbf{c}, m ; w)$ opens \mathbf{c} and reveals m, together with w that proves the correct opening.

Pedersen

- $\operatorname{Setup}\left(1^{\mathfrak{K}}\right): g, h \in \mathbb{G}$;
- Commit $(m ; r): \mathbf{c}=g^{m} h^{r}$;
- Decommit($\mathbf{c}, m ; r): \mathbf{c} \stackrel{?}{=} g^{m} h^{r}$.

Definition (Signature Scheme)

$\mathcal{S}=($ Setup, SKeyGen, Sign, Verif):

- Setup $\left(1^{\mathfrak{K}}\right)$: param;
- SKeyGen(param): public verification key vk, private signing key sk;
- Sign(sk, m; s): signature σ on m, under sk;
- Verif(vk, m, σ): checks whether σ is valid on m.

Given q pairs $\left(m_{i}, \sigma_{i}\right)$, it should be hard to output a valid σ on a fresh m.

Definition (Waters Signature)

- Setup $\mathcal{S}\left(1^{\mathfrak{K}}\right)$: Generates $\left(p, \mathbb{G}, \mathbb{G}_{T}, e, g\right)$, an extra h, and $\left(u_{i}\right)$ for the Waters function $\left(\mathcal{F}(m)=u_{0} \prod_{i} u_{i}^{m_{i}}\right)$.
- SKeyGen $_{\mathcal{S}}$ (param): Picks $x \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}$ and outputs sk $=h^{x}$, and $\mathrm{vk}=g^{\times}$;
- Sign(sk, $m ; s)$: Outputs $\sigma(m)=\left(\mathrm{sk} \mathcal{F}(m)^{s}, g^{s}\right)$;
- Verif(vk, $m, \sigma)$: Checks the validity of $\sigma: e\left(g, \sigma_{1}\right) \stackrel{?}{=} e\left(\mathcal{F}(m), \sigma_{2}\right) \cdot e(\mathrm{vk}, h)$

Randomization

$\operatorname{Random}(\sigma ; r): \sigma^{\prime}=\left(\sigma_{1} \mathcal{F}(m)^{r}, \sigma_{2} g^{r}\right)=\left(\operatorname{sk} \mathcal{F}(m)^{r+s}, g^{r+s}\right)$

Definition (DL)

Given $g, h \in \mathbb{G}^{2}$, it is hard to compute α such that $h=g^{\alpha}$.

Definition (CDH)

Given $g, g^{a}, h \in \mathbb{G}^{3}$, it is hard to compute h^{a}.

Definition (DLin)

Given $u, v, w, u^{a}, v^{b}, w^{c} \in \mathbb{G}^{6}$, it is hard to decide whether $c=a+b$.

2 Building blocks

(3) Non-Interactive Proofs of Knowledge

- Groth Sahai methodology
- Motivation
- Signature on Ciphertexts
- Application to other protocols
- Waters Programmability

(4) Interactive Implicit Proofs

Groth-Sahai Proof System

- Pairing product equation (PPE): for variables $\mathcal{X}_{1}, \ldots, \mathcal{X}_{n} \in \mathbb{G}$

$$
(E): \prod_{i=1}^{n} e\left(A_{i}, \mathcal{X}_{i}\right) \prod_{i=1}^{n} \prod_{j=1}^{n} e\left(\mathcal{X}_{i}, \mathcal{X}_{j}\right)^{\gamma_{i, j}}=t_{T}
$$

determined by $A_{i} \in \mathbb{G}, \gamma_{i, j} \in \mathbb{Z}_{p}$ and $t_{T} \in \mathbb{G}_{T}$.

- Groth-Sahai \rightsquigarrow WI proofs that elements in \mathbb{G} that were committed to satisfy PPE

Groth-Sahai Proof System

- Pairing product equation (PPE): for variables $\mathcal{X}_{1}, \ldots, \mathcal{X}_{n} \in \mathbb{G}$

$$
(E): \prod_{i=1}^{n} e\left(A_{i}, \mathcal{X}_{i}\right) \prod_{i=1}^{n} \prod_{j=1}^{n} e\left(\mathcal{X}_{i}, \mathcal{X}_{j}\right)^{\gamma_{i, j}}=t_{T}
$$

determined by $A_{i} \in \mathbb{G}, \gamma_{i, j} \in \mathbb{Z}_{p}$ and $t_{T} \in \mathbb{G}_{T}$.

- Groth-Sahai \rightsquigarrow WI proofs that elements in \mathbb{G} that were committed to satisfy PPE

Setup (\mathbb{G}) : commitment key $\mathbf{c k}$;
$\operatorname{Com}(\mathbf{c k}, X \in \mathbb{G} ; \rho)$: commitment $\overrightarrow{c_{X}}$ to X;
$\operatorname{Prove}\left(\mathbf{c k},\left(X_{i}, \rho_{i}\right)_{i=1, \ldots, n},(E)\right)$: proof ϕ;
Verify $\left(\mathbf{c k}, \vec{x}_{i},(E), \phi\right)$: checks whether ϕ is valid.
$(E): \prod_{i=1}^{n} e\left(A_{i}, \mathcal{X}_{i}\right) \prod_{i=1}^{n} \prod_{j=1}^{n} e\left(\mathcal{X}_{i}, \mathcal{X}_{j}\right)^{\gamma_{i, j}}=t_{T}$

Assumption	DLin	SXDH	SD
Variables	3	2	1
PPE	9	$(2,2)$	1
Linear	3	2	1
Verification	$12 n+27$	$5 m+3 n+16$	$n+1$
[ACNS 2010: BFI+]	$3 n+6$	$m+2 n+8$	$n+1$

$$
(E): \prod_{i=1}^{n} e\left(A_{i}, \mathcal{X}_{i}\right) \prod_{i=1}^{n} \prod_{j=1}^{n} e\left(\mathcal{X}_{i}, \mathcal{X}_{j}\right)^{\gamma_{i, j}}=t_{T}
$$

Assumption	DLin	SXDH	SD
Variables	3	2	1
PPE	9	$(2,2)$	1
Linear	3	2	1
Verification	$12 n+27$	$5 m+3 n+16$	$n+1$
ACNS 2010: BFI+]	$3 n+6$	$m+2 n+8$	$n+1$

Properties:

- correctness
- soundness
- witness-indistinguishability
- randomizability Commitments and proofs are publicly randomizable.

$$
(E): \prod_{i=1}^{n} e\left(A_{i}, \mathcal{X}_{i}\right) \prod_{i=1}^{n} \prod_{j=1}^{n} e\left(\mathcal{X}_{i}, \mathcal{X}_{j}\right)^{\gamma_{i, j}}=t_{T}
$$

Assumption	DLin	SXDH	SD
Variables	3	2	1
PPE	9	$(2,2)$	1
Linear	3	2	1
Verification	$12 n+27$	$5 m+3 n+16$	$n+1$
ACNS 2010: BFI+]	$3 n+6$	$m+2 n+8$	$n+1$

Properties:

- correctness
- soundness
- witness-indistinguishability
- randomizability Commitments and proofs are publicly randomizable.

Electronic Voting

For dessert, we let people vote
\checkmark Chocolate Cake
\checkmark Cheese Cake
\checkmark Fruit Salad
\checkmark Brussels Sprout
After collection, we count the number of ballots:
Chocolate Cake 123
Cheese Cake 79
Fruit Salad 42
Brussels sprout 1

Authentication

- Only people authorized to vote should be able to vote
- People should be able to vote only once

Anonymity

- Votes and voters should be anonymous
\triangle Receipt freeness

Homomorphic Encryption and Signature approach

- The voter generates his vote v.
- The voter encrypts v to the server as c.
- The voter signs c and outputs σ.
- (c, σ) is a ballot unique per voter, and anonymous.
- Counting: granted homomorphic encryption $C=\Pi c$.
- The server decrypts C.

Electronic Cash

Protocol

- Withdrawal: A user get a coin c from the bank
- Spending: A user pays a shop with the coin c
- Deposit: The shop gives the coin c back to the bank

Electronic Coins

Expected properties
\checkmark Unforgeability \rightsquigarrow Coins are signed by the bank
\checkmark No Double-Spending \rightsquigarrow Each coin is unique
\checkmark Anonymity \rightsquigarrow Blind Signature

Definition (Blind Signature)

A blind signature allows a user to get a message m signed by an authority into σ so that the authority even powerful cannot recognize later the pair (m, σ).

Round-Optimal Blind Signature

Fischlin 06

- The user encrypts his message m in c.
- The signer then signs c in σ.
- The user verifies σ.
- He then encrypts σ and c into \mathcal{C}_{σ} and \mathcal{C} and generates a proof π.
- $\pi: \mathcal{C}_{\sigma}$ is an encryption of a signature over the ciphertext c encrypted in \mathcal{C}, and this c is indeed an encryption of m.
- Anyone can then use $\mathcal{C}, \mathcal{C}_{\sigma}, \pi$ to check the validity of the signature.

Vote

- A user should be able to encrypt a ballot.
- He should be able to sign this encryption.
- Receiving this vote, one should be able to randomize for Receipt-Freeness.

E-Cash

- A user should be able to encrypt a token
- The bank should be able to sign it providing Unforgeability
- This signature should now be able to be randomized to provide Anonymity

Our Solution

- Same underlying requirements;
- Advance security notions in both schemes requires to extract some kind of signature on the associated plaintext;
- General Framework for Signature on Randomizable Ciphertexts;
- \rightsquigarrow Revisited Waters, Commutative encryption / signature.

Commutative properties

Encrypt

To encrypt a message m :

$$
c=\left(\mathrm{pk}_{1}^{r_{1}}, \mathrm{pk}_{2}^{r_{2}}, \mathcal{F}(m) \cdot g^{r_{1}+r_{2}}\right)
$$

Commutative properties

Encrypt

To encrypt a message m :

$$
c=\left(\mathrm{pk}_{1}{ }^{r_{1}}, \mathrm{pk}_{2}^{r_{2}}, \mathcal{F}(m) \cdot g^{r_{1}+r_{2}}\right)
$$

Sign ○ Encrypt

To sign a valid ciphertext c_{1}, c_{2}, c_{3}, one has simply to produce.

$$
\sigma=\left(c_{1}^{s}, c_{2}^{s}, \text { sk } \cdot c_{3}^{s}, \mathrm{pk}_{1}^{\mathrm{s}}, \mathrm{pk}_{2}^{\mathrm{s}}, g^{s}\right) .
$$

Commutative properties

Encrypt

To encrypt a message m :

$$
c=\left(\mathrm{pk}_{1}^{r_{1}}, \mathrm{pk}_{2}^{r_{2}}, \mathcal{F}(m) \cdot g^{r_{1}+r_{2}}\right)
$$

Sign ○ Encrypt

To sign a valid ciphertext c_{1}, c_{2}, c_{3}, one has simply to produce.

$$
\sigma=\left(c_{1}^{s}, c_{2}^{s}, \text { sk } \cdot c_{3}^{s}, \mathrm{pk}_{1}^{\mathrm{s}}, \mathrm{pk}_{2}^{\mathrm{s}}, g^{\mathrm{s}}\right) .
$$

Decrypt ○ Sign ○ Encrypt
Using dk.

$$
\sigma=\left(\sigma_{3} / \sigma_{1}^{\mathrm{d} k_{1}} \cdot \sigma_{2}^{\mathrm{d} k_{2}}, \sigma_{6}\right)=\left(\mathrm{sk} \cdot \mathcal{F}(m)^{s}, g^{s}\right) .
$$

Definition (Signature on Ciphertexts)

$\mathcal{S E}=($ Setup, SKeyGen, EKeyGen, Encrypt, Sign, Decrypt, Verif):

- Setup $\left(1^{\mathfrak{K}}\right)$: param $_{e}$, param $_{s}$;
- EKeyGen(parame $)$: pk, dk;
- SKeyGen(param $)_{s}$: vk, sk;
- Encrypt(pk, vk, m; r): produces c on $m \in \mathcal{M}$ and pk;
- Sign(sk, pk, $c ; s)$: produces σ, on the input c under sk;
- Decrypt(dk, vk, c): decrypts c under dk ;
- Verif(vk, pk, $c, \sigma)$: checks whether σ is valid.

Definition (Extractable Randomizable Signature on Ciphertexts)

$\mathcal{S E}=($ Setup, SKeyGen, EKeyGen, Encrypt, Sign, Random, Decrypt, Verif, SigExt):

- Random(vk, pk, $\left.c, \sigma ; r^{\prime}, s^{\prime}\right)$ produces c^{\prime} and σ^{\prime} on c^{\prime}, using additional coins;
- $\operatorname{SigExt}(\mathrm{dk}, v k, \sigma)$ outputs a signature σ^{*}.

Randomizable Signature on Ciphertexts [PKC 2011: BFPV]

Extractable SRC

E-Voting

[PKC 2011: BFPV]

Blind Signature

[PKC 2011: BFPV]

Partially-Blind Signature

Signer

Partially-Blind Signature

Signer-Friendly Partially Blind Signature [SCN 2012: BPV]

Multi-Source Blind Signatures

Wireless Sensor Network

Multi-Source Blind Signatures

[SCN 2012: BPV]

Two solutions

Different Generators

- Each captor has a disjoint set of generators for the Waters function - Enormous public key

Two solutions

Different Generators

- Each captor has a disjoint set of generators for the Waters function
- Enormous public key

Two solutions

Different Generators

- Each captor has a disjoint set of generators for the Waters function
- Enormous public key

A single set of generators

- The captors share the same set of generators
- Waters over a non-binary alphabet?

Two solutions

Different Generators

- Each captor has a disjoint set of generators for the Waters function
- Enormous public key

A single set of generators

- The captors share the same set of generators
- Waters over a non-binary alphabet?

Programmability of Waters over a non-binary alphabet

Definition ((m, n)-programmability)

F is (m, n) programmable if given g, h there is an efficient trapdoor producing a_{X}, b_{X} such that $F(X)=g^{a x} h^{b_{x}}$, and for all X_{i}, Z_{j}, $\operatorname{Pr}\left[a_{X_{1}}=\cdots=a X_{m}=0 \wedge a z_{1_{1}} \cdot \ldots \cdot a z_{n} \neq 0\right]$ is not negligible.

$(1, q)$-Programmability of Waters function

Why do we need it: Unforgeabilty, q signing queries, 1 signature to exploit. \rightsquigarrow Choose independent and uniform elements $\left(a_{i}\right)_{(1, \ldots, \ell)}$ in $\{-1,0,1\}$, and random exponents $\left(b_{i}\right)_{(0, \ldots, \ell)}$, and setting $a_{0}=-1$.
Then $u_{i}=g^{a_{i}} h^{b_{i}}$.
$\mathcal{F}(m)=u_{0} \prod u_{i}^{m_{i}}=g^{\sum_{\delta_{i}} a_{i}} h^{\sum_{\delta_{i}} b_{i}}=g^{a_{m}} h^{b_{m}}$.

Non (2, 1)-programmability
Waters over a non-binary alphabet is not (2,1)-programmable.
(1, q)-programmability
Waters over a polynomial alphabet remains $(1, q)$-programmable.

Sum of random walks on polynomial alphabets

Local Central Limit Theorem \rightleftharpoons Lindeberg Feller

- New primitive: Signature on Randomizable Ciphertexts
\checkmark One Round Blind Signature
\checkmark Receipt Free E-Voting
\checkmark Signer-Friendly Blind Signature
\checkmark Multi-Source Blind Signature
[PKC 2011: BFPV] [PKC 2011: BFPV] [PKC 2011: BFPV] [SCN 2012: BPV] [SCN 2012: BPV]

Efficiency

- DLin + CDH : $9 \ell+24$ Group elements.
- SXDH $+\mathrm{CDH}^{+}: 6 \ell+15,6 \ell+7$ Group elements.

Other results based on Groth Sahai Methodology:

- Traceable Signatures
- Transferable E-Cash
[2012: BP]
[Africacrypt 2011: $\mathrm{BCF}+$]

(2) Building blocks

(3) Non-Interactive Proofs of Knowledge
(4) Interactive Implicit Proofs

- Motivation
- Smooth Projective Hash Function
- Application to various protocols
- Manageable Languages

Certification of Public Keys: (NI)ZKPoK

Certification of a public key

Certification of Public Keys: (NI)ZKPoK

Certification of a public key

Certification of Public Keys: (NI)ZKPoK

Certification of a public key

Certification of Public Keys: (NI)ZKPoK

Certification of a public key

Certification of Public Keys: (NI)ZKPoK

Certification of a public key

π can be forwarded

Certification of Public Keys: SPHF
 [ACP09]

A user can ask for the certification of pk, but if he knows the associated sk only:
With a Smooth Projective Hash Function
$\mathcal{L}: p k$ and $C=\mathcal{C}(s k ; r)$ are associated to the same sk

- U sends his pk, and an encryption C of sk;
- A generates the certificate Cert for pk, and sends it, masked by Hash = Hash(hk; (pk, C));
- U computes Hash $=\operatorname{ProjHash}(h p ;(p k, C), r))$, and gets Cert.

Certification of Public Keys: SPHF
 [ACP09]

A user can ask for the certification of pk, but if he knows the associated sk only:

With a Smooth Projective Hash Function

$\mathcal{L}: p k$ and $C=\mathcal{C}(s k ; r)$ are associated to the same sk

- U sends his pk, and an encryption C of sk;
- A generates the certificate Cert for pk, and sends it, masked by Hash = Hash(hk; (pk, C));
- U computes Hash $=\operatorname{ProjHash}(h p ;(p k, C), r))$, and gets Cert.

Implicit proof of knowledge of sk

Smooth Projective Hash Functions

Definition

Let $\{H\}$ be a family of functions:

- X, domain of these functions
- L, subset (a language) of this domain
such that, for any point x in $L, H(x)$ can be computed by using
- either a secret hashing key hk: $H(x)=\operatorname{Hash}_{L}(h k ; x)$;
- or a public projected key hp: $H^{\prime}(x)=\operatorname{ProjHash}_{L}(h p ; x, w)$

Public mapping $h k \mapsto h p=\operatorname{ProjKG}_{L}(\mathrm{hk}, x)$

SPHF Properties

For any $x \in X, H(x)=\operatorname{Hash}_{L}($ hk; $x)$
For any $x \in L, H(x)=\operatorname{ProjHash}_{L}(h p ; x, w)$
w witness that $x \in L, h p=\operatorname{ProjKG}_{L}(h k, x)$

For any $x \notin L, H(x)$ and hp are independent

Pseudo-Randomness

SPHF Properties

For any $x \in X, H(x)=\operatorname{Hash}_{L}($ hk; $x)$
For any $x \in L, H(x)=\operatorname{ProjHash}_{L}(h p ; x, w)$
w witness that $x \in L, h p=\operatorname{ProjKG}_{L}(h k, x)$

Smoothness

For any $x \notin L, H(x)$ and hp are independent

SPHF Properties

For any $x \in X, H(x)=\operatorname{Hash}_{L}($ hk; $x)$
For any $x \in L, H(x)=$ ProjHash $_{L}(h p ; x, w)$
w witness that $x \in L, h p=\operatorname{ProjKG}_{L}(\mathrm{hk}, x)$

Smoothness

For any $x \notin L, H(x)$ and hp are independent

Pseudo-Randomness

For any $x \in L, H(x)$ is pseudo-random, without a witness w

SPHF Properties

For any $x \in X, H(x)=\operatorname{Hash}_{L}($ hk $; x)$
For any $x \in L, H(x)=$ ProjHash $_{L}(h p ; x, w)$
w witness that $x \in L, h p=\operatorname{ProjKG}_{L}(\mathrm{hk}, x)$

Smoothness

For any $x \notin L, H(x)$ and hp are independent

Pseudo-Randomness

For any $x \in L, H(x)$ is pseudo-random, without a witness w
The latter property requires L to be a hard-partitioned subset of X.

Certification of Public Keys: SPHF

[ACP09]

Certification of a public key

$$
P \oplus \operatorname{ProjHash}(\mathrm{hp} ;(\mathrm{pk}, C), r)=\mathrm{Cert}
$$

Certification of Public Keys: SPHF

[ACP09]

Certification of a public key

Server	$\mathrm{pk}, C=\mathcal{C}(\mathrm{sk} ; r) \leftarrow$
$\mathrm{hp}=\operatorname{ProjKG}(\mathrm{hk}, C)$	

Implicit proof of knowledge of sk

$$
P \oplus \operatorname{ProjHash}(\mathrm{hp} ;(\mathrm{pk}, C), r)=\mathrm{Cert}
$$

Oblivious Signature-Based Envelope (OSBE)
 [LDB03]

A sender S wants to send a message P to U such that

- U gets P iff it owns $\sigma(m)$ valid under vk
- S does not learn whereas U gets the message P or not Correctness: if U owns a valid signature, he learns P
- Oblivious: S does not know whether U owns a valid signature (and thus gets the message);
- Semantic Security: U does not learn any information about P if he does not own a valid signature.

Oblivious Signature-Based Envelope (OSBE)
 [LDB03]

A sender S wants to send a message P to U such that

- U gets P iff it owns $\sigma(m)$ valid under vk
- S does not learn whereas U gets the message P or not Correctness: if U owns a valid signature, he learns P

Security Notions

- Oblivious: S does not know whether U owns a valid signature (and thus gets the message);
- Semantic Security: U does not learn any information about P if he does not own a valid signature.

Oblivious Signature-Based Envelope (OSBE)

A sender S wants to send a message P to U such that

- U gets P iff it owns $\sigma(m)$ valid under vk
- S does not learn whereas U gets the message P or not Correctness: if U owns a valid signature, he learns P

Security Notions

- Oblivious: S does not know whether U owns a valid signature (and thus gets the message);
- Semantic Security: U does not learn any information about P if he does not own a valid signature.

One-Round OSBE from IBE

The authority owns the master key of an IBE scheme, and provides the decryption key (signature) associated to m to U. S wants to send a message P to U, if U owns a valid signature.

- S encrypts P under the identity m.
- Correct: trivial
- Oblivious: no message sent!
- Semantic Security: IND-CPA of the IBE

One-Round OSBE from IBE

The authority owns the master key of an IBE scheme, and provides the decryption key (signature) associated to m to U. S wants to send a message P to U, if U owns a valid signature.

- S encrypts P under the identity m.

Security properties

- Correct: trivial
- Oblivious: no message sent!
- Semantic Security: IND-CPA of the IBE

But the authority can decrypt everything!

One-Round OSBE from IBE

The authority owns the master key of an IBE scheme, and provides the decryption key (signature) associated to m to U. S wants to send a message P to U, if U owns a valid signature.

- S encrypts P under the identity m.

Security properties

- Correct: trivial
- Oblivious: no message sent!
- Semantic Security: IND-CPA of the IBE

But the authority can decrypt everything!

A Stronger Security Model

S wants to send a message P to U, if U owns/uses a valid signature.

Security Notions

- Oblivious w.r.t. the authority: the authority does not know whether U uses a valid signature;
- Semantic Security: U cannot distinguish multiple interactions with :
S sending P_{0} from those with S sending P_{1}
if he does not own/use a valid signature;
- Semantic Security w.r.t. the Authority: after the interaction, the authority does not learn any information about P.

Our New OSBE
 [TCC 2012: BPV]

S wants to send a message P to U, if U owns a valid $\sigma(m)$ under vk:

With a Smooth Projective Hash Function

$\mathcal{L}: C=\mathcal{C}(\sigma, r)$ contains a valid $\sigma(m)$ under vk

- the user U sends an encryption C of σ;
- A generates hk and the associated hp, computes $H=\operatorname{Hash}(h k ; C)$, and sends hp together with $c=P \oplus H$;
- U computes $X=\operatorname{ProjHash}(\mathrm{hp} ; C, r)$, and gets P.
$\operatorname{Lin}(\mathrm{pk}, m):\{\mathcal{C}(m)\} \quad \rightsquigarrow \quad$ WLin $(\mathrm{pk}, \mathrm{vk}, m):\{\mathcal{C}(\sigma(m))\}$
$(U, V, W, G) \in W \operatorname{Lin}(\mathrm{pk}, \mathrm{vk}, m):$
$\exists r, s \in \mathbb{Z}_{p},(U, V, W)=\left(u^{r}, v^{s}, g^{r+s} \sigma\right), e(\sigma, g)=e(h, \mathrm{vk}) \cdot e(\mathcal{F}(m), G)$

Security Properties

\checkmark Oblivious w.r.t. the authority: IND-CPA of the encryption scheme (Hard-partitioned Subset of the SPHF);
\checkmark Semantic Security: Smoothness of the SPHF
\checkmark Semantic Security w.r.t. the Authority: Pseudo-randomness of the SPHF
Semantic Security w.r.t. the Authority requires one interaction \rightsquigarrow round-optimal

Security Properties

\checkmark Oblivious w.r.t. the authority: IND-CPA of the encryption scheme (Hard-partitioned Subset of the SPHF);
\checkmark Semantic Security: Smoothness of the SPHF
\checkmark Semantic Security w.r.t. the Authority: Pseudo-randomness of the SPHF
Semantic Security w.r.t. the Authority requires one interaction \rightsquigarrow round-optimal

Security Properties

\checkmark Oblivious w.r.t. the authority: IND-CPA of the encryption scheme (Hard-partitioned Subset of the SPHF);
\checkmark Semantic Security: Smoothness of the SPHF
\checkmark Semantic Security w.r.t. the Authority: Pseudo-randomness of the SPHF
Semantic Security w.r.t. the Authority requires one interaction \rightsquigarrow round-optimal Standard model with Waters Signature + Linear Encryption \rightsquigarrow CDH and DLin

$$
\begin{aligned}
& \text { ProjHash }_{L}(\mathrm{hp}, C ; w)=H^{\prime} \\
& P^{\prime}=Q \oplus H^{\prime}
\end{aligned}
$$

$L=\mathrm{WLin}(\mathrm{ck}, \mathrm{vk}, m) \rightsquigarrow e(\underline{\mathcal{X}}, g)=e\left(\mathcal{F}(m), \sigma_{2}\right) \cdot e(\mathrm{vk}, h)$

Blind-Signatures
 [TCC 2012: BPV]

Groth Sahai
 $9 \ell+24$

Blind-Signatures
 [TCC 2012: BPV]

Groth Sahai
 $9 \ell+24$

SPHF

$8 \ell+12$

Languages
BLin: $\{0,1\}$,
ELin: $\{\mathcal{C}(\mathcal{C}(\ldots))\}$.

Password Authenticated Key Exchange

$$
\begin{gathered}
\rightarrow \mathcal{C}\left(p w_{B}\right) \\
\mathcal{C}\left(p w_{A}\right), h p_{B} \leftarrow \\
\rightarrow h p_{A}
\end{gathered}
$$

$H_{B} \cdot H_{A}^{\prime}$

$$
H_{B}^{\prime} \cdot H_{A}
$$

Same value iff both passwords are the same, and users know witnesses.

Language Authenticated Key Exchange

Alice

$H_{B} \cdot H_{A}^{\prime}$

$$
\begin{gathered}
\rightarrow \mathcal{C}\left(\mathcal{L}_{B}\right), \mathcal{C}\left(\mathcal{L}_{A}^{\prime}\right), \mathcal{C}\left(M_{B}\right) \\
\mathcal{C}\left(\mathcal{L}_{A}\right), \mathcal{C}\left(\mathcal{L}_{B}^{\prime}\right), \mathcal{C}\left(M_{A}\right), \mathrm{hp}_{B} \leftarrow \\
\rightarrow \mathrm{hp}_{A}
\end{gathered}
$$

Bob

$$
H_{B}^{\prime} \cdot H_{A}
$$

Same value iff languages are as expected, and users know witnesses.

- Diffie Hellman / Linear Tuple

$$
\begin{aligned}
& \left(g, h, G=g^{a}, H=h^{a}\right) \\
& h p=g^{\kappa} h^{\lambda}
\end{aligned}
$$

Valid Diffie Hellman tuple?

$$
h p^{a}=G^{\kappa} H^{\lambda}
$$

Oblivious Transfer, Implicit Opening of a ciphertext

- Diffie Hellman / Linear Tuple
- Conjunction / Disjunction
$\left(g, h, G=g^{a}, H=h^{a}\right)$
$\mathrm{hp}=g^{\kappa} h^{\lambda}$
Oblivious Transfer, Implicit Opening of a ciphertext

$$
\begin{aligned}
& \left(U=u^{a}, V=v^{b}, W=g^{a+b}\right) \\
& h p=u^{\kappa} g^{\lambda}, v^{\mu} g^{\lambda}
\end{aligned}
$$

Valid Diffie Hellman tuple?

$$
h p^{a}=G^{\kappa} H^{\lambda}
$$

Valid Linear tuple?

$$
h p_{1}^{a} \mathrm{hp} p_{2}^{b}=U^{\kappa} V^{\mu} W^{\lambda}
$$

- Diffie Hellman / Linear Tuple
- Conjunction / Disjunction

$$
\begin{aligned}
& \mathcal{L}_{1} \cap \mathcal{L}_{2} \\
& \mathrm{hp}=\mathrm{hp}_{1}, \mathrm{hp}_{2} \\
& \wedge A_{i}
\end{aligned}
$$

- Diffie Hellman / Linear Tuple
- Conjunction / Disjunction

```
\mathcal{L}
hp=hp
\wedge (
```

$\mathcal{L}_{1} \cup \mathcal{L}_{2}$
$\mathrm{hp}=\mathrm{hp}_{1}, \mathrm{hp}_{2}, \mathrm{hp} \mathrm{p}_{\Delta}$
Is it a bit?

- Diffie Hellman / Linear Tuple
- Conjunction / Disjunction

```
\mathcal{L}
hp=hp
\wedge (
```

$\mathcal{L}_{1} \cup \mathcal{L}_{2}$
$\mathrm{hp}=\mathrm{hp}_{1}, \mathrm{hp}_{2}, \mathrm{hp}{ }_{\Delta}$
Is it a bit?
$\rightsquigarrow B$ Lin.

Simultaneous verification

$$
H_{1}^{\prime} \cdot H_{2}^{\prime}=H_{1} \cdot H_{2}
$$

One out of 2 conditions

$$
H^{\prime}=\mathcal{L}_{1} ? h p_{1}^{w_{1}}: h p_{2}^{w_{2}} \cdot h p_{\Delta}=X_{1}^{h k_{1}}
$$

- (Linear) Cramer-Shoup Encryption

$$
\begin{aligned}
& \left(e=h^{r} M, u_{1}=g_{1}^{r}, u_{2}=g_{2}^{r}, v=\left(c d^{\alpha}\right)^{r}\right) \\
& h p=g_{1}^{\kappa} g_{2}^{\mu}\left(c d^{\alpha}\right)^{\eta} h^{\lambda}
\end{aligned}
$$

Verifiability of the CS
$h p^{r}=u_{1}^{\kappa} u_{2}^{\mu} v^{\eta}(e / M)^{\lambda}$

Implicit Opening of a ciphertext, verifiability of a ciphertext, PAKE

- (Linear) Cramer-Shoup Encryption
- Commitment of a commitment

$$
\begin{aligned}
& \left(e=h^{r} M, u_{1}=g_{1}^{r}, u_{2}=g_{2}^{r}, v=\left(c d^{\alpha}\right)^{r}\right) \\
& h p=g_{1}^{\kappa} g_{2}^{\mu}\left(c d^{\alpha}\right)^{\eta} h^{\lambda}
\end{aligned}
$$

Verifiability of the CS
$h p^{r}=u_{1}^{\kappa} u_{2}^{\mu} v^{\eta}(e / M)^{\lambda}$

Implicit Opening of a ciphertext, verifiability of a ciphertext, PAKE

$$
\begin{aligned}
& \left.\left(g_{1}^{r}, g_{2}^{s}, g_{3}^{r+s}, h_{1}^{r} h_{2}^{s} M,\left(c_{1} d_{1}^{\alpha}\right)^{r}\right)\left(c_{2} d_{2}^{\alpha}\right)^{s}\right) \\
& h p=g_{1}^{\kappa} g_{3}^{\theta}\left(c_{1} d_{1}^{\alpha}\right)^{\eta} h^{\lambda}, g_{2}^{\mu} g_{3}^{\theta}\left(c_{1} d_{1}^{\alpha}\right)^{\eta} h^{\lambda}
\end{aligned}
$$

Verifiability of the LCS
$\mathrm{hp}_{1}^{r} \cdot \mathrm{hp}_{2}^{s}=u_{1}^{\kappa} u_{2}^{\mu} u_{3}^{\theta} v^{\eta}(e / M)^{\lambda}$

- (Linear) Cramer-Shoup Encryption
- Commitment of a commitment
- Linear Pairing Equations
- Quadratic Pairing Equation

$$
\begin{aligned}
& \left(U=u^{a}, V=v^{s}, G=h^{s} g^{a}\right) \\
& h p=u^{\eta} g^{\lambda}, v^{\theta} h^{\lambda}
\end{aligned}
$$

- (Linear) Cramer-Shoup Encryption
- Commitment of a commitment
- Linear Pairing Equations
- Quadratic Pairing Equation

$$
\left(\prod_{i \in A_{k}} e\left(\mathcal{Y}_{i}, \mathcal{A}_{k, i}\right)\right) \cdot\left(\prod_{i \in B_{k}} \mathcal{Z}_{i}^{3}{ }_{3}{ }^{\prime}\right)=\mathcal{D}_{k}
$$

For each variables: $\mathrm{hp}_{i}=u^{\kappa_{i}} g^{\lambda}, v^{\mu_{i}} g^{\lambda}$
$\left(\prod_{i \in A_{k}} e\left(h p_{i}^{w_{i}}, \mathcal{A}_{k, i}\right)\right) \cdot\left(\prod_{i \in B_{k}} H P_{i}^{3 k, i w_{i}}\right)=$ $\left(\prod_{i \in A_{k}} e\left(H_{i}, \mathcal{A}_{k, i}\right)\right) \cdot\left(\prod_{i \in B_{k}} H_{i}^{3_{k, i}}\right) / \mathcal{D}_{k}^{\lambda}$

Knowledge of a secret key, Knowledge of a (secret) signature on a (secret) message valid under a (secret) verification key, ...

- (Linear) Cramer-Shoup Encryption
- Commitment of a commitment
- Linear Pairing Equations
- Quadratic Pairing Equation

$$
\left(\prod_{i \leq j \in A_{k}} e\left(\mathcal{Y}_{i}, \mathcal{A}_{k, i}\right) \cdot e\left(\mathcal{Y}_{i}, \mathcal{Y}_{j}\right)^{\gamma_{i, j}}\right) \cdot\left(\prod_{i \in B_{k}} \mathcal{Z}_{i}^{\mathcal{Z}_{k, i}}\right)=\mathcal{D}_{k}
$$

Anonymous membership to a group, other way to do BLin,... $e\left(g^{b}, g^{1-b}\right)=1_{T}$

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

Various Applications:

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

Various Applications:
\checkmark IND-CCA [CS02]

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

Various Applications:
\checkmark IND-CCA [CS02]
\checkmark PAKE [GL03]

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

Various Applications:
\checkmark IND-CCA [CS02]
\checkmark PAKE [GL03]
\checkmark Certification of Public Keys [ACP09]

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

```
Various Applications:
    \checkmark IND-CCA [CS02]
    \checkmark PAKE [GL03]
    \checkmark Certification of Public Keys [ACP09]
```


Privacy-preserving protocols:

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

```
Various Applications:
\(\checkmark\) IND-CCA [CS02]
\(\checkmark\) PAKE [GL03]
\(\checkmark\) Certification of Public Keys [ACP09]
```

Privacy-preserving protocols:
\checkmark Blind signatures
[TCC 2012: BPV]

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

```
Various Applications:
    \checkmark IND-CCA [CS02]
    \checkmark PAKE [GL03]
    \checkmark Certification of Public Keys [ACP09]
```

Privacy-preserving protocols:

\checkmark Blind signatures
\checkmark Oblivious Signature-Based Envelope

[TCC 2012: BPV]
[TCC 2012: BPV]

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

Various Applications:
\checkmark IND-CCA [CS02]
\checkmark PAKE [GL03]
\checkmark Certification of Public Keys [ACP09]

Privacy-preserving protocols:
\checkmark Blind signatures
\checkmark Oblivious Signature-Based Envelope
\checkmark (v)-PAKE, LAKE, Secret Handshakes

```
[TCC 2012: BPV]
[TCC 2012: BPV] [eprint/sub 2012: BPCV]
```

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

Various Applications:
\checkmark IND-CCA [CS02]
\checkmark PAKE [GL03]
\checkmark Certification of Public Keys [ACP09]

Privacy-preserving protocols:
\checkmark Blind signatures
[TCC 2012: BPV]
\checkmark Oblivious Signature-Based Envelope
\checkmark (v)-PAKE, LAKE, Secret Handshakes
\checkmark E-Voting
[TCC 2012: BPV]
[eprint/sub 2012: BPCV] [sub 2012: BP]

Many more Round optimal applications?

Smooth Projective Hash Functions $\hat{=}$ implicit proofs of knowledge

```
Various Applications:
\(\checkmark\) IND-CCA [CS02]
\(\checkmark\) PAKE [GL03]
\(\checkmark\) Certification of Public Keys [ACP09]
```

Privacy-preserving protocols:
\checkmark Blind signatures
\checkmark Oblivious Signature-Based Envelope
\checkmark (v)-PAKE, LAKE, Secret Handshakes
\checkmark E-Voting
[TCC 2012: BPV]
[TCC 2012: BPV]
[eprint/sub 2012: BPCV] [sub 2012: BP]
\triangle Many more Round optimal applications?

Groth-Sahai

- Allows to combine efficiently classical building blocks
- Allows several kind of new signatures under standard hypotheses

Smooth Projective Hash Functions

- Can handle more general languages under better hypotheses
- Do not add any extra-rounds in an interactive scenario
- More efficient in the usual cases

Groth-Sahai

- Allows to combine efficiently classical building blocks
- Allows several kind of new signatures under standard hypotheses

Smooth Projective Hash Functions

- Can handle more general languages under better hypotheses
- Do not add any extra-rounds in an interactive scenario
- More efficient in the usual cases

